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Abstract 

While Machine Learning (ML) excels at predictive tasks, its inferential capacity is limited due 

to its complex non-parametric structure. This paper aims to elucidate the analytical behavior 

of ML through Interpretable Machine Learning (IML) in a real estate context. Using a hedonic 

ML approach to predict unit-level residential rents for Frankfurt, Germany, we apply a set of 

model-agnostic interpretation methods to decompose the rental value drivers and plot their 

trajectories over time. Living area and building age are the strongest predictors of rent, 

followed by proximity to CBD and neighborhood amenities. Our approach is able to detect the 

critical distances to these centers beyond which rents tend to decline more rapidly. Conversely, 

close proximity to hospitality facilities as well as public transport is associated with rental 

discounts. Overall, our results suggest that IML methods provide insights into algorithmic 

decision-making by illustrating the relative importance of hedonic variables and their 

relationship with rental prices in a dynamic perspective. 

Keywords: Interpretable Machine Learning, Microeconomic Hedonic Pricing, Housing 

Markets, Rental Markets 

 

Introduction  

Possible applications of Artificial Intelligence (AI)  and Machine Learning (ML) are manifold 

and are rapidly gaining importance across a number of domains. While most members of the 

general public interact with ML algorithms on a daily basis (e.g. personalized web ads, mail 

spam filter, etc.), there is also a growing number of discoveries and implementations in 

research. Recently, Deepmind and its interdisciplinary research team solved one of the biggest 

challenges in biology with their AI-based system AlphaFold to predict how proteins fold – a 

problem that has been investigated for nearly 50 years (Senior et al., 2020). Further high stake 

domains include arrival planning in emergency department and cancer diagnosis in healthcare 

(Ahmad et al., 2018) or recidivism forecasting in criminal justice (Berk & Bleich, 2013). 
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But how is it that these methods are only gradually coming to the fore? The high predictive 

performance marks ML as a promising extension for existing regression as well as classification 

tasks due to their ability to incorporate complex patterns and deal with large datasets. However, 

because the methods are often perceived as opaque, their so-called ‘black box’ character is 

repeatedly criticized. Certain use cases such as an AI-based decision support of credit 

applications may improve and accelerate business operations of banks, however the sole 

decision of whether a credit may be granted or denied lacks accountability and does not 

represent a satisfactory outcome for neither the applicant nor the creditor. Consequently, 

explaining the inner working of an ML model is important to justify and validate how a certain 

decision is made as well as to discover new insights (Adadi & Berrada, 2018).  

A similar picture can be seen for the application of AI in the real estate industry. Because real 

estate represents one of the largest asset classes worldwide (Kok et al., 2017), an adequate 

estimation of real estate prices and rents are of crucial importance for investors, landlords and 

tenants. By treating the property as the sum of its individual characteristics, the hedonic price 

regression has established itself as the main approach for price and rent estimation. ML models 

have proven to be helpful in real estate hedonic modelling especially for predictive purposes. 

Nevertheless, their inferential capabilities are limited, since the aforementioned missing 

transparency hides the inner logic and decision making process (Mullainathan & Spiess, 2017). 

But how to overcome this obvious weakness? One possibility is to design models in such a way 

that their complexity is kept low from the beginning to ensure interpretability. An example 

comes from Lechner et al. (2020), who have created a deep learning algorithm that manages to 

control a car based on only a few artificial neurons. As a result, the decisions made by the 

algorithm are easy to understand while maintaining robustness and functionality. Another 

possibility is to examine existing ML algorithms and their results with special analysis tools in 

order to establish interpretability. This is where this study picks up. The ML algorithm eXtreme 
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Gradient Boosting (XGB) is used for a hedonic estimation of rents in the city Frankfurt am 

Main, Germany, and forms the basis for the application of Interpretable Machine Learning 

(IML ) methods. Different model-agnostic tools such as feature importance and feature effects 

are applied to illustrate how hedonic characteristics contribute to the final prediction of the 

applied ML model. To the best of the authors’ knowledge, this is the first real estate related 

study to use ex-post IML methods to justify machine-based decision-making on the one hand, 

and on the other hand, to gain further insights into the individual value of certain hedonic 

characteristics of an apartment.   
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Literature review 

For decades, hedonic models have formed the basis for empirically assessing prices and rents 

of properties based on their characteristics, such as amenities or location. A hedonic model 

estimates the effects of these characteristics by bundling them into a function and can thus 

determine the price of a property. The approach is commonly used because the concept offers 

many possible applications for a wide variety of problems.  

According to Sirmans et al. (2005), origins of the hedonic model do not go back to just one 

founding father. Whereas Court (1939) first used a hedonic procedure to determine automobile 

prices, Lancaster (1966) and Rosen (1974) paved the way for the application in real estate. 

Since then, a large body of literature has emerged dealing with issues surrounding the 

relationship between the price or rent of a property and its characteristics. Essays by Sheppard 

(1999), Malpezzi (2002) and Sirmans et al. (2005) provide an overview of the diversity, but 

also the complexity of the questions that arise within hedonic research. However, the starting 

point is, as so often, the underlying data set or the available features of a property. Dubin (1988) 

argues that building characteristics that usually determine prices in a hedonic model can be 

grouped into three categories: Structural, location and neighbourhood variables. Can (1992) 

and Stamou et al. (2017) define them as follows: Structural variables describe the nature of an 

apartment, such as its size, the number of rooms or the age of the property. Location variables, 

on the other hand, such as distance to the central business district (CBD), define the geographic 

location. Neighbourhood variables tie in here and illustrate the socio-economic environment 

such as household income or the physical make-up of the closer environment. Often, the 

location and neighbourhood variables are considered together, as sometimes the distinction is 

not evident (Can, 1992, Haider & Miller, 2000, Des Rosiers et al., 2011, Stamou et al., 2017). 

In the recent past, much of the focus of studies has been on the effect of these locational or 

neighbourhood characteristics. Within this group, variables of interest come mainly from the 
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environmental, infrastructure and social domains. With respect to features in the immediate 

environment of a property, Dumm et al. (2016), Rouwendal et al. (2017) and Jauregui et al. 

(2019) analyse the effect of proximity to water on price. Studies by Below et al. (2015) and 

Dumm et al. (2018) show the price impact of nearby subsurface conditions such as sinkholes 

or land erosion. Other issues such as the influence of distance to urban green spaces (Conway 

et al., 2010) or the presence of air pollution (Fernández-Avilés et al., 2012) also receive 

attention. Considering the group of neighbouring infrastructural facilities and their impact on 

properties, different studies emerged. Hoen et al. (2015), Hoen and Atkinson-Palombo (2016) 

and Wyman and Mothorpe (2018) study the effects of nearby electric facilities on property 

prices, such as wind turbines and power lines. Availability of transportation facilities such as 

of a highway and rail transit are investigated by Chernobai et al. (2011), Li  (2020) and Chin et 

al. (2020). According to Theisen and Emblem (2018) and Zheng et al. (2016), the possibility of 

an easy access to early childhood education and training in the form of nearby kindergarten or 

schools is also a price-determining factor of residential properties. There are even more exotic 

themes such as the influence of strip clubs (Brooks et al., 2020) or the proximity to food trucks 

(Freybote et al., 2017). Nevertheless, factors in the immediate social environment can also play 

a role. For example, Goodwin et al. (2020) find that the presence of home ownership 

associations has price-determining effects. Seo (2018) shows that the neighbourhood condition 

is similarly price determining. 

When it comes to the model design, the usual hedonic approach involves a parametric, semi- 

or non-parametric multiple regression analysis, which uses a pooled data set of properties and 

their individual features. Interestingly, the development of improved computational capabilities 

has recently allowed other methods such as ML to complement this estimation process. While 

the parametric hedonic price regression approach is largely applied for inferential purposes, its 

potential for predictive tasks is rather limited (Pérez-Rave et al., 2019). The scope of ML 
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methods, however, is the other way around. While inference has hardly played a role so far due 

to the mostly opaque algorithms, the predictive qualities of these methods are much more 

pronounced. ML algorithms, like gradient tree boosting (GTB) (Friedman, 2001), random forest 

regression (RFR) (Breiman, 2001a) and support vector regression (SVR) (Smola & Schölkopf, 

2004), are capable of artificially learning from the underlying data and continuously improving 

their predictive performance. Hence, these algorithms have shown remarkable accuracy. In the 

real estate literature, various studies demonstrate the performance of ML algorithms and 

parametric hedonic models, including Lam et al. (2009) and Kontrimas and Verikas (2011) for 

SVR, Yoo et al. (2012), Antipov and Pokryshevskaya (2012) and Yao et al. (2018) for RFR and 

van Wezel et al. (2005) and Kok et al. (2017) for boosting methods such as GTB. Furthermore, 

Zurada et al. (2011), Mayer et al. (2019) and Ho et al. (2021) document the performance of 

different ML methods.  

However, these methods are viewed critically due to their black box character (McCluskey et 

al., 2013), since the final result often delivers the raw prediction without letting one know how 

it came to the respective conclusion. As Mayer et al. (2019) state, the predictive accuracy is 

only achieved by reduced comprehensibility of the ML models due to its ability to artificially 

capture highly complex pattern within the underlying data. In consequence, researchers are 

mostly faced with the trade-off between what is predicted (prediction) and why the prediction 

took place (inference).  

In general, many ML methods, such as SVR, RFR and GTB, provide model transparency since 

there is an understanding of how the underlying algorithm works and the algorithm can be 

described mathematically without further knowledge of the data – although the structure of ML 

methods is increasingly complex. Nevertheless, model interpretability in terms of identifying 

and understanding what factors impact the final predictions seems to be the bottleneck for an 
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overall acceptance and implementation of ML methods, because sole measures like predictive 

accuracy are “an incomplete description of most real-world tasks” (Doshi-Velez & Kim, 2017). 

In the real estate literature, first approaches have been made to combine predictive and 

inferential purposes within a ML context. Pérez-Rave et al. (2019) propose a variable selection 

approach called “incremental sample with resampling” tested on two data sets of property 

prices. They apply random forests to varying subsamples to predict the final property prices. 

Variables are identified as important, if the feature is used in the final prediction rule of the 

RFRs for 95% of the subsamples. The final inferential interpretation is based on a parametric 

hedonic model using only the ML-selected variables. Moreover, Pace and Hayunga (2020) 

analyse the informational content of residuals from linear, spatial hedonic regression and ML 

models. After applying regression trees, they find that spatial information is still present in the 

residuals of ML models. Although single trees are easy to understand and their decision rule 

can be illustrated graphically, they show limited predictive performance and tend to be unstable 

due to high sensitivity to changes in the data or tuning parameter.  

To conclude this section, this rather young field of research opens up the possibility to further 

engage with the interpretability of ML models and the impact of hedonic characteristics. In the 

following, we present the data set of our analysis and describe the methods we use to enable 

the interpretability of ML-based predictions. After that we discuss the results and summarize 

our findings in the conclusion.  
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Data 

The sample for our analysis comprises 52,966 observations of residential rents in Frankfurt am 

Main, Germany. The country is the fourth largest economy worldwide and known as a safe 

haven for both domestic and cross-border real estate investments. With one of the lowest home 

ownership ratios of 51% being well below the European average, Germany is seen as a rental 

market rather than a homeowner market. Frankfurt represents the leading financial hub in 

continental Europe and is hosting the European Central Bank and the Frankfurt Stock Exchange 

amongst many important financial institutions. Its metropolitan region is home to more than 5.8 

million inhabitants.  

Rental data stems from Empirica Systeme, one of the largest German provider of real estate 

data, which comprises, amongst others, real estate listings of leading German Multiple Listing 

Systems (MLS). Data preparation and cleaning is performed to account for duplicates and 

erroneous data points. As the study focuses on the urban rental market in Frankfurt that is 

mainly determined by apartment rentals, we exclude single, semi-detached and terraced houses. 

We furthermore leave out student apartments, senior living accommodations, furnished co-

living spaces, and short-stay apartments to control for highly specialized sub-markets that are 

expected to bias the overall rental market. Figure 1 provides two maps of the rental distribution 

in the data sample for Frankfurt. It highlights the average rent per sqm in every ZIP Code (left) 

and displays all observations gathered (right). Both maps indicate that the highest rents are 

found in the center, while lower rents tend to occur in the outskirts. There are no rental 

observations in the most southern part of Frankfurt due to highly forested areas and the airport 

of Frankfurt. 
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Figure 1: Distribution of rents and observations of the Frankfurt data sample 

 

Notes: The left map shows average rents per sqm for each ZIP code. The right map depicts all observations. Both cover the Frankfurt city area 

from 2013 to 2019. The thin grey lines display the ZIP codes.  

Besides the rent as target variable, the data contain information on structural characteristics in 

terms of living area, building age, floor and whether a kitchen, parking spot, balcony, terrace, 

bathtub and elevator is present or whether an apartment is refurbished. We add socio-economic 

data from Growth from Knowledge, Germany’s largest market research institute. Since all 

rental data points are georeferenced, we are able to add a spatial gravity layer based on data 

from Eurostat, the German statistical office and Open Street Map to account for spatial 

information and therefore add several location variables. We include the distance to the CBD 

as well as to numerous important amenities. Proximity to bus and railway station account for 

public transport and accessibility. Bakery, supermarket, convenience and department store 

distances comprice the local supply. Bar, beer garden and café represent the access to 

hospitality. While distances to school and park allow insights on public amenities, proximity to 

car wash and traffic signal incorporate adverse effects mainly due to noise emissions. 

MLS are frequently used in German rental markets from professional as well as from private 

landlords. Moreover, since neither landlords nor tenants are obliged to disclose contract 

information in Germany, listing data is the main source of information for both researchers and 
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practitioners.1 In addition, it should be noted that rental price formation in major German cities 

is generally dominated by the offering party since residential vacancy rates in metropolitan 

areas are remarkably low.2 A look at individual renting scenarios reveals that a landlord 

regularly receives inquiries in the double-digit range for an apartment that has been advertised. 

In consequence, the rental decision is not based on auction procedures but rather on timely 

application and best (personal and solvent) fit  for the landlord. In the literature, Cajias and 

Freudenreich (2018) demonstrate that German residential markets are subject to low Time-on-

Market and diminishing degrees of overpricing. As Gröbel (2019) suggests, asking data in 

Germany “reflect the currently prevailing overall market situation”. Although we do not claim 

that rental listing precisely reflect the agreed contract rent, we expect the listing rents to be a 

useful framework for the ongoing analysis.  

  

                                                 
1 See e.g. Gröbel and Thomschke  (2018) using German rental listing prices in research as well as well-established 

applications of listing data e.g. F+B Residential Index or Empirica Real Estate Index in practice. 
2 According to CBRE, the vacancy rate for residential real estate in the city of Frankfurt am Main marks 0.4% of 

the stock. Moreover, Immobilienscout 24, the leading online listing platform for real estate in Germany, reports 

198 clicks on average for an online apartment advertisement. 
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Table 1: Descriptive Statistics of the dataset for Frankfurt am Main (2013 ï 2019) 

 Unit  Mean Median Std.Dev 

Rent EUR/month 1,036.123 884 638.175 

Living area sqm 78.175 72 36.688 

Floors Integer 2.396 2 2.328 

Age (relative to 2017) Integer 49.377 48 39.701 

Bathtub Binary 0.564 1 0.496 

Refurbished Binary 0.242 0 0.428 

Built-in kitchen Binary 0.688 1 0.463 

Balcony Binary 0.633 1 0.482 

Parking Binary 0.487 0 0.500 

Elevator Binary 0.449 0 0.497 

Terrace Binary 0.136 0 0.342 

Purchasing Power EUR/HH/ZIP 50,390 49,993 5,798 

CBD_distance Km. 3.616 3.604 1.896 

Bar_distance Km. 0.722 0.511 0.636 

Beergarden_distance Km. 1.135 0.937 0.759 

Cafe_distance Km. 0.346 0.240 0.325 

Bakery_distance Km. 0.370 0.245 0.403 

Convenience store_distance Km. 0.849 0.589 0.748 

Department store_distance Km. 1.550 1.306 0.997 

Supermarket_distance Km. 0.252 0.223 0.167 

Bus station_distance Km. 3.062 2.667 1.566 

Railway station_distance Km. 0.835 0.581 0.685 

Traffic signals_distance Km. 0.186 0.157 0.135 

Car wash_distance Km. 1.266 1.234 0.584 

Park_distance Km. 0.266 0.236 0.158 

School_distance Km. 0.302 0.278 0.167 

Notes: The table reports the summary statistics comprising data as of January 2013 to December 2019. Age is calculated as the difference of 
the building age to the year 2017. All distance variables are calculated as the distance to the specific dwelling in kilometers. Binary variables 

report whether the dwelling includes a certain characteristic (1) or not (0). Rent is presented as euro per month. Information on households 
(HH) is reported on ZIP level. SD: standard deviation, Min: minimum value, Max: maximum value. 

Table 1 shows the descriptive statistics. We find a mean asking rent of 1,036.12 EUR p.m. 

(euros per month). An average apartment is 78.175 sqm located on the 2nd floor in a property 

that was built in 1968. The apartment contains a bathtub, a built-in-kitchen, a balcony, but 

neither a parking slot nor an elevator. On average, it is 3.62 km away from the CBD, 350 meters 

to the nearest café and 250 meters to the closest supermarket. The bus and railways station are 

3 km and 0.84 km away, whereas the nearest school is located 300 meters nearby. The mean 

household purchasing power amounts to 50,390 EUR p.m. 3  

                                                 
3 In Appendix 3, we provide a full set of correlation coefficients for all variables. 
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Methodology 

ML has proven its predictive power in the literature and is commonly used by real estate 

professionals to inform their decision making (RICS, 2017). We apply a tree-based approach 

to build the foundation for further analysis. As Pace and Hayunga (2020) state, a regression tree 

(RT) is easy-to-understand while still being capable of identifying complex pattern. That is 

because trees can capture non-linear relationships as well as interactions. In its core, a RT can 

be understood as nested if-else conditions. Tree-based models divide the data in distinct subsets 

and make a prediction for every subset (which usually is the average outcome of all observations 

in the specific subset). The division is made by several splitting steps, in which iteratively a 

feature variable is chosen and its feature space is split in a way that a certain criterion is affected 

most (e.g. the prediction error is reduced most) until a stopping point is reached. 

Since single trees are prone to misspecification, ensembles are used to aggregate and combine 

the prediction rule of multiple trees. We choose XGB as an ensemble boosting method, which 

has shown to be capable of accurately predicting property prices and rents and at the same time 

yield robust estimation results.4 Developed by Chen and Guestrin (2016), it is a promising 

approach for regression, as well as for classification, as it contains specific features that won it 

several Kaggle5 competitions in the recent past. In its basic concept, boosting fits an initial tree, 

calculates the residuals of the initial prediction, and fits another tree on the residuals to stepwise 

reduce the prediction error and incrementally enhance the final prediction rule. To prevent 

overfitting cross-validation is applied.  

Because the internal logic and consequently the rationale behind the individual predictions is 

rather hidden, the use of ML often lacks transparency. In consequence, a growing body of 

                                                 
4 In general, tree-based ensemble algorithms are based on two different approaches, namely boosting and bagging. 

See e.g. Hastie et al.  (2009) for a more detailed introduction to the fundamentals of ML models. 
5 Kaggle is one of the leading online platforms for the data science community and regularly hosts data 

competitions. For further information see https://www.kaggle.com 
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literature on IML6 has evolved in recent years to further ‘improve trust’ in algorithmic decisions 

(See e.g. Adadi & Berrada, 2018; Carvalho et al., 2019; Arrieta et al., 2020 or Linardatos et al., 

2021). In general, tree-based ML methods show some sort of algorithmic transparency, since 

their underlying concept and theory is comprehensible and mathematically described (James et 

al., 2013). Nevertheless, it is not evident, which feature7 and to what extent it contributes to the 

prediction. 

One possibility to understand how predictions are achieved in this context is to use 

interpretable ML models.8 Like in parametric models, specific restrictions limit the 

complexity of the model and therefore allow inferential insights. RTs are a well-known example 

of interpretable ML models if e.g. the depth of the tree is limited. As Molnar (2020) states, short 

trees with a depth up to three splits are interpretable in a comprehensive way, since a maximum 

combination of three if-else-conditions as the decision rule is enough to explain how the model 

yield a certain prediction.  

Limiting the models complexity often results in depriving ML much of its effect, since their 

flexible structure enables a strong predictive performance (Breiman, 2001b)9. Consequently, 

(post-hoc) model-agnostic interpretation methods have been developed, which separate the 

explanatory framework and the ML model, thus preserving its predictive capabilities. In 

contrast to interpretable models, the ML model remains a black box, with the separated 

interpretation methods aiming at extracting interpretable information post-hoc. Model-agnostic 

tools benefit from their flexibility because they do not depend on a specific ML method and 

can be applied to various learners (Ribeiro et al., 2016).  

                                                 
6 In the context of IML, the term Explainable Artificial Intelligence (XAI) is often used synonymously. 
7 To describe the covariates, hedonic literature mainly refers to them as variables or characteristics, while research 

on IML generally uses the term features. 
8 Interpretable ML models are also referred to as transparent models, since they are considered to be understandable 

by itself. 
9 See e.g. Shmueli (2010) for further discussion on the trade-off between model accuracy and interpretability. 
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Interpretation methods differ on whether their focus is on feature importance or feature effects. 

The first one aims at evaluating which feature contributes the most to the prediction, whereas 

the second one sheds light on how a single feature contributes to the prediction. The methods 

are perceived as typical and useful tools to show the impact of features in ML models and 

explain the inner working on a global level (Hastie et al., 2009). We use the FeatureEffect and 

FeatureImp functions both implemented in the iml package in R (R Core Team, 2020). 

Feature importance (FI)  measures the relevance of a single feature for the prediction. The 

importance of a feature is calculated by permutation of the observed feature values and its effect 

on the prediction error, keeping all other features constant. Based on the concept of Breiman 

(2001a) for random forests, Fisher et al. (2019) provides a model-agnostic framework for 

measuring the covariates contribution to the accuracy of an ML model called ‘model reliance’. 

Let ὢ be the feature matrix, ὣ the dependent variable and Ὢ the ML model, with the prediction 

error Ὡ being measured by a loss function ὒὣȟὪὢ . The feature importance is defined as the 

ratio of the model error after permutation to the original model error before switching features. 

ὊὍὪ  
Ὡ Ὢ

Ὡ Ὢ
                                                               ρ 

The permutated error is thereby calculated as the expected error of the ML model based on the 

permuted feature matrix ὢ . 

Ὡ Ὢ  ɞὒὣȟὪὢ                                               ς  

To visualize the most important features, every variable is ranked and plotted according to their 

FI. Alternatively, the FI score can also be calculated as the difference of both errors, although 

the ratio provides the advantage of higher comparability. We use the Mean Absolute Error 

(MAE) as loss function. By switching the feature values of all observations (e.g. an observation 

with 1 for a kitchen being present is switched to 0), FI calculates how much this change leads 
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to an observable decrease in prediction accuracy. It can consequently identify whether the 

specific feature contributes to the overall prediction or whether its change does not perceptibly 

affect the outcome. Lastly, we average the importance measures over 100 repeated 

permutations. As Fisher et al. (2019) states, FI is a helpful tool to identify influential features 

and increase the transparency of black box models. 

In addition to the individual importance, feature effects show how a single feature influences 

the predicted outcome of an ML model. After the training process, a ML model has learned a 

specific relationship between the covariates and the target variable that can be analysed. Partial 

Dependence (PD) plots visualize the marginal effects of features on the model’s prediction 

(Friedman, 2001). The plots are based on partial dependence functions which highlight the 

effect of one feature on the target variable when the average effects of all other features are 

accounted for. PD plots reveal useful information e.g. whether the relationship can be explained 

linearly or in a more complex manner. 

Let once again ὢ be the vector of the j variables and n be the number of observations. The PD 

is the effect of features of a subset ὢ by marginalizing over all other features in the complement 

subset ὢ  (Zhao & Hastie, 2021). Given the ML model Ὢ, the partial function Ὢ  is defined as: 

Ὢ ὼ Ὁ Ὢὼȟὼ Ὢὼȟὼ Ὠᴖὼ                                  σ 

With Ὠᴖὼ being the marginal distribution of ὢ . Marginalizing over all other features leads 

to a function that is solely dependent on the features ὢ to be analyzed. The partial function Ὢ  

is estimated using the Monte Carlo method to average over actual features values ὼ  while 

keeping ὢ constant: 

Ὢ ὼ  
ρ

ὲ
Ὢὼȟὼ                                                      τ 
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As shown in Greenwell (2017), all values of feature ὼ (e.g. living area) are in a first step 

replaced with the particular feature value (e.g. of the first observations). The ML model predicts 

expected output values for the newly created dataset (where all observations have the same 

constant feature value ὼ). Averaging over these predictions calculates the marginal effect at 

the particular feature value. This step is repeated n times to obtain a marginal effect for all 

observed feature values. Finally, the single feature values are plotted against the resulting Ὢ . 

For a linear hedonic model, e.g. based on ordinary least squares (OLS), a PD plot would show 

a straight line representing the specific estimated coefficient. As Zhao and Hastie (2021) state, 

PD plots are a valuable visualization tool to interpret how the prediction of ML models depend 

on specific features. 
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Econometric results 

To set up a functional ML framework, we first train the XGB algorithm on our dataset of rental 

prices described in the data section. We apply random cross-validation with five folds and five 

repetitions. The tuning process takes 16 hours with 72 central processing units (CPUs) running 

simultaneously. The final XGB model is trained with η = 0.243, γ = 0.0431, λ = 28.99 and α = 

22.64. The out of sample rental prediction with XGB yields to a R² of 92.50%. The mean 

absolute percentage error marks 11.13%. Moreover, 57.96% of all predictions deviate less than 

10% from the observed values. The tuned XGB algorithm subsequently allows a post-hoc 

analysis with a set of model-agnostic interpretation tools to identify feature importance and 

feature effects.10 

Feature importance of the hedonic characteristics 

Figure 2 provides the relevance of all characteristics for the ML prediction based on FI. The 

features are individually ranked on the y-axis from most important at the top to least important 

at the bottom. The x-axis provides information of how much prediction accuracy changes when 

the feature values are permutated. Median values are plotted with the bar denoting the 5% and 

95% quantiles. Feature importance ratios exceeding 1 indicate an observable impact on the 

overall prediction. Ratios that tend towards 1 imply a rather negligible influence of the features. 

 

 

 

 

                                                 
10 To ensure basic hedonic functionality of a hedonic rent estimation, we apply linear, spatial and non-linear 

methods in advance. The corresponding methodology and the results are presented and discussed in Appendix 1 

(methodology) and 2 (results). All variables show expected signs and do not contradict findings from related 

literature.  
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Figure 2: Feature importance of the hedonic characteristics 

 
Note: The figure displays the median values of the relative feature importance obtained with XGB. MAE is chosen as loss function. Variables 

are ranked based on their FI score. The bar denotes the 5% and 95% quantiles of the distribution of FI scores after 100 repetitions. A break in 
the horizontal axis is conducted to ease readability. 

It is not surprising, that living area and age are seen to have by far the biggest impact on rental 

prediction. Their median values highlight that randomly permuting living area and age 

individually 100 times, increases the model error by a factor of 4.64 and 1.39, while keeping 

all other variables constant. Furthermore, distance to the CBD and to a department store are of 

high importance and associated with an increase in MAE of 1.10 and 1.09. We expect both 

variables to be a suitable proxy for a good location.11 Moreover, the presence of a built in 

kitchen is also heavy influential. The purchasing power per household is followed by the 

distances to the bus station and the nearest bar and beer garden.12 The existence of a parking 

spot complements the ten most influential variables. We will not discuss the remaining variables 

in detail since their contribution seems rather marginal. The small distribution of FI for all 

variables demonstrated by the 5% and 95% quantile indicates that the results are stable over all 

repetitions. To summarize, feature importance ranks how relevant a variable is for the predictive 

                                                 
11 In major German cities, department stores are usually located either close to the city center or in highly 

frequented and therefore good shopping locations. 
12 Beer gardens are perceived as important hospitality institutions in Germany and thus the result is not surprising. 
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task as it provides which variables are more or less influential for an ML model. One can thus 

obtain a first impression whether an algorithmic hedonic model delivers reliable results that are 

based on a plausible understanding of the economic context. However, FI does not provide any 

information about the sign. To clarify e.g. whether a small or large distance is decisive, we 

investigate feature effects in a next step. 

Feature effects of the hedonic characteristics 

PD plots enable an analysis of how a certain feature influences the rental prediction and which 

relationships between residential rents and property characteristics has been traced by the 

algorithm. While the X-Axis provides information on the independent variable with the stacked 

black lines indicating the amount of observations, the Y-Axis shows the respective rent level. 

Since marginal effects are calculated and averaged for every feature value, PD plots require 

high computational power. Thus, we plot the partial dependence for the year 2019, whose 

generation took eight hours of computing time. 

Figure 3: PD Plots for living area, age, distances to CBD and department store in 2019 

 
Note: The figure displays the partial dependence of the most important feature regarding two structural characteristics and distance to CBD 

and department store. The vertical axis denotes the feature values of log rent level while the horizontal axis represents the covariates feature 

values. Stacked black lines display the number of observations. Source: Own depiction. 
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Figure 3 demonstrates how rental prices are associated with the four most influential 

characteristics living area, age and distance to CBD and department store. We start with the 

most important feature living area, which is incorporated as the natural logarithm. Since the PD 

plot highlights a linear relationship, the commonly applied log-log transformation can be 

confirmed as a good approximation of the positive relationship between living area and rent. 

Recent hedonic literature on property prices provides similar findings for the positive 

relationship (e.g. Dumm et al., 2016, Dumm et al., 2018 or Stamou et al., 2017). Age is 

perceived to be more complex, though intuitive. We find rental values to decrease with greater 

age until a building year of 1990-2000. While newly build apartments obtain highest rents, 

depreciation, changes in living preference as well as increasing requirements on energy-

efficient construction most likely result in a steep decline in rental values. This is followed by 

an indifference of rental values up to 1940th. Frankfurt was heavily bombed in World War II, 

with emergence constructions of social housing provided by the government in the following 

decades. Therefore, historical pre-war buildings face higher rents. Consequently, building age 

displays a u-shaped relationship, as e.g. incorporated in Mayer et al. (2019). 

Distance to CBD is perceived to be highly influential. In general, we find rental prices to decline 

with greater distance to the city center. Hedonic literature suggests similar conclusions since 

authors such as Osland (2010) or Zheng et al. (2016) also find a negative relationship between 

property prices and distance to the city center. However, the opposite effect is visible for close 

proximity. We expect tenants to appreciate separation from very urban areas. A graphical 

turning point can be found at about 1.5 km, followed by moderate decline in rental prices. 

Interestingly, apartments close to the CBD face comparable rental values than the ones in 5 km 

distance. A steep decrease in rent levels can be seen beyond 5 and 7.5 km.  

Regarding local supply, department stores are rather linearly and negatively associated with 

rental values. The proximity to shopping facilities results in increasing rents. We do not find an 

equivalent distance variable in the hedonic literature, however, Dubé and Legros (2016) show 
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a positive price effect for properties not more than 1 km away from a shopping center. 

Interesting to note, the distance to department store drops sharply at about 1.5 and 2.5 km. This 

could indicate a critical distance for consumer goods. However, FI identifies supermarket as 

the least important distance variable. We assume that a high density of supermarkets in urban 

areas ensure local supply for everyday goods and therefore result in a negligible influence on 

rental values. In contrast, we assume different circumstances in rural communities. With minor 

influence due to the limited appearance of department stores, we expect the importance of 

supermarket to be more pronounced in non-metropolitan areas. Furthermore, FI ranks the 

presence of a built-in kitchen as important. Gröbel and Thomschke (2018) find a significant 

positive relationship between built-in kitchens and rents in Berlin (Germany). However, due to 

its binary nature, the visualization with PD plots is limited. 

Figure 4: PD Plots for purchasing power, distances to bus station, bar and beer garden  

 
Note: The figure displays the partial dependence of the most important feature regarding two structural characteristics and distance to CBD 

and department store. The vertical axis denotes the feature values of log rent level while the horizontal axis represents the covariates feature 

values. Stacked black lines display the number of observations. Source: Own depiction. 

The next most important characteristics displayed in Figure 4 are, according to FI, purchasing 

power and distance to bus station, bar and beer garden. We find socio-demographic information 

to show a rather linear relationship. Neighborhoods with high purchasing power are associated 
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with more expensive apartments and thus the variable is perceived as a characteristic of a good 

residential area. A steep increase in rental values for high wealth districts could reflect the 

segment of high-rise apartments in residential towers. While the construction of high-rise 

buildings is restricted in most German cities, Frankfurt has early incorporated tower buildings 

in urban planning. These do not only represent the highest price segment in the residential 

market of Frankfurt but have shown to be driver of residential prices and rents in the last years. 

Interesting to note, the distance to bar, beer garden and bus station have shown to affect the 

overall prediction the most out of all hospitality and public transport features. All three variables 

show a non-linear relationship with residential rents. We find the distance to a bar to be 

positively associated with rental values up to approx. 700 meters. While a bar in close proximity 

would result in lower rents, the access to hospitality leads to an increase in rental values only 

from a certain distance. We expect tenants to face a trade-off between accessibility and negative 

externalities such as noise. The same relationship holds for the variable bus station. A location 

further away from a central bus hub is linked to higher rental values up to approx. 1.7 km. Since 

central hubs are related to mostly high urban density and traffic, we assume that tenants 

appreciate locational separation. The plot reveals the relationship to be quite constant until 3.5 

km, followed by declining rental prices. The accessibility to central hubs through different 

means of transport seems to overlay negative effect of a larger distance. However, after 3.5 km, 

we find this effect to become visible and apartments that are poorly located in terms of transport 

face discounts for low accessibility. The presence of a parking spot complements the ten most 

influential variables, yet as a binary variable it is not displayed as a PD plot. 
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Figure 5: PD plot for rent and distance to CBD for the years 2013 to 2019 

 
Note: The figure displays the partial dependence of important variables over different periods. The vertical axis denotes the feature values of 
the log rent level while the horizontal axis denotes the covariates feature values. Source: Own depiction. 

Adding a temporal dimension to our analysis by displaying feature effects on a yearly basis 

enables us in a last step to illustrate temporal dynamics of the effects of hedonic characteristics. 

We demonstrate the latter by analyzing the distance to the CBD (Figure 5) and the distance to 

a department store (Figure 6). 

At first, Figure 5 shows a negative relationship between rents and the distance to CBD across 

time. A continuous upwards shift for all feature values indicates increasing rent levels during 

the observed period. Only the graph of the year 2019 behaves differently, since it moves below 

2018 for closer proximity and analogous from 5 km distance onwards. This development could 

be attributed to a declining preference for downtown locations in combination with overall 

stable rent levels in recent years. Although the course of all lines is quite similar, we find some 

differences. First, a drop in rental prices at a distance of 5 km is less pronounced for 2017, 2018 

and 2019 than for previous years. This possibly indicates that residential locations further away 

from the center experienced rent increases due to a growing preference for sub-urban areas 

during the last years. Second, another major decline can be recognized at 7 km for 2013 to 2016. 
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In the following years 2017 to 2019, however, this is only noticeable at a distance of approx. 

7.5 km, but the downturn is considerably stronger. Both changes indicate that residential 

locations in medium distance to the center (5 to 7.5 km) experienced stronger rent increases 

compared to central as well as periphery location. We would assume that high demand in central 

locations results in a preference shift towards apartments further away from the CBD. 

Figure 6: PD plot for rent and distance to department store for the years 2013 to 2019 

 
Note: The figure displays the partial dependence of important variables over different periods. The vertical axis denotes the feature values of 
the log rent level while the horizontal axis denotes the covariates feature values. Source: Own depiction. 

In Figure 6, a negative relationship between rents and the distance to a department store is 

displayed, yet a similar pattern for the graphs can be seen in terms of comparable upwards shift 

of rents throughout all periods and 2019 being slightly below 2018. A first major decline is 

visible at approximately 1.2 km, with the years 2013, 2014 and 2015 experiencing a stronger 

decrease. From 2.6 km distance, the picture is the other way around. Whereas rents fell rapidly 

from 2016 to 2019, the downturn was not as strong as in previous years. The findings indicate 

that while locations between 1.2 km and 2.8 km gained popularity, locations in close proximity 

as well as further away remained more or less stable. Appendix 4 provides additional and 
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centered PD plots for the features Distance to Distance to department store. Centered PD plots 

aid and underpin the interpretation of the differences in PDs throughout the years. 

Ultimately, the feature effects technique yields greater transparency of how the different inputs 

contribute to the final estimation of the ML model. By visualizing the individual relations 

between the variables and the rent to be estimated, this method demonstrates which (economic) 

rational the algorithm has learned from the data and accordingly integrated into its internal 

calculations.  
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Conclusion 

This paper sheds light on how Machine Learning (ML) based decision making in hedonic 

modelling can be made more transparent. We visualize and investigate the relationship between 

residential rents and a set of hedonic variables which was learned by a ML model. Based on a 

residential dataset of more than 52k apartments in Frankfurt am Main, Germany, we apply the 

eXtreme Gradient Boosting algorithm (XGB) for rental prediction. Model-agnostic 

Interpretable Machine Learning (IML) methods are subsequently used to examine feature 

importance and feature effects. Feature importance (FI) reveals that living area, age and the 

distance to CBD and a department store influence the overall rental prediction the most. In 

contrast, the least important features are several structural dummy variables and the distance to 

a supermarket and a bakery, albeit in an urban setting with presumably excellent coverage with 

every-day shopping facilities. 

We plot the partial dependences (PD) for the influential variables that were detected in the 

preceding analysis to highlight feature effects. Although the relationship of rental values and 

the distance to CBD and department store is mainly linear, major declines at specific proximity 

values indicate that critical distances to the center as well as to local supply exist. Furthermore, 

there seems to be a difference in rent level to the wealthiest neighborhoods. Interestingly, we 

find that close proximity to hospitality and public transport is associated with rental discounts. 

In addition, the inspection of PD plots on a yearly basis reveals that especially apartments in a 

medium distance to the city center face considerable higher rent increases over the years. We 

assume both an increasing preference for less urban areas as well as peaking rent in the center 

to be possible reasons. 

To conclude, interpretation methods can reveal the rationale behind the ML models estimation 

by demonstrating what relationship the algorithm detects in the underlying data. Peeking inside 

the black box enables researchers to reenact how a ML model arrived at its prediction and will 
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help to gain new insights, ease practical applications and enhance reliability in algorithmic 

decisions. 

The insights gained by these methods are relevant not only for research but also for practice in 

the private as well as public sector. Since real estate professionals commonly use ML to inform 

their decision making (RICS, 2017), model-agnostic methods provide a useful framework to 

effectively handle AI-based results. Whereas the advantages of these methods have already 

been discussed in detail, difficulties and limitations must also be pointed out. First of all, there 

are challenges in terms of computing power. Whereas parametric or semi-parametric methods 

are usually able to estimate hedonic models within seconds, ML-based methods such as XGB 

take considerably longer. This also applies to the application of IML. Furthermore, it should be 

noted that data availability is of course essential for hedonic models. Even with ML-based 

models, an omitted variable bias can drastically reduce the informative value and thus the 

applicability. Admittedly, the data set of this study is quite extensive, but there are of course 

other additional apartment features imaginable that could influence the meaning of the results. 

IML is a rapidly evolving field with new methods and applications being continuously 

proposed. Although this research area has achieved a degree of stability (Molnar et al., 2020), 

it is still in its infancy and faces several challenges to overcome. On the one hand, there is a 

need to define what interpretability means to then evaluate how black box models can be made 

more interpretable. On the other hand, the sensitivity of interpretation methods is of high 

importance, since not only these methods, but also the ML techniques are dynamically 

developing. To further improve trust in algorithmic decisions, ongoing research is necessary. 

We expect IML methods to be a valuable addition to the hedonic practice, both because it 

contributes to the transparency of ML models and because it provides insights on potentially 

unknown relationships in real estate hedonic modelling. 
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Appendix  

Appendix 1 

We apply different hedonic methods that have been used regularly in the literature. First, we 

deploy a hedonic OLS modelling approach to estimate the effects of property characteristics on 

rental prices. Linear hedonic regression represents the standard approach in modelling real 

estate prices and rents and is frequently used in housing studies (Mayer et al., 2019). The 

hedonic regression describes the rent ὣ as the sum of the predicted values of its 

characteristics ὢ: 

             ὣ  ‍ ὢ‍  ‐                                                                       υ 

In accordance to the real estate literature, a semi-log functional form with log-transformation 

of the dependent variable is conducted. Property characteristics include structural, socio-

economic neighborhood and locational features. Proximity variables account for the spatial 

distance to public amenities and transport. Further spatial effects are modelled via spatial 

expansion by incorporating the coordinates in terms of longitude and latitude (Bitter et al., 2007, 

Chrostek & Kopczewska, 2013, Pace & Hayunga, 2020). Furthermore, temporal dummies are 

included for the specific month and year.  

Many authors argue that property prices and rents may contain two key figures, namely spatial 

autocorrelation and spatial heterogeneity, that can require the spatial extension of hedonic 

models (LeSage, 1999). Since the occurrence of spatial effects can lead to misspecifications 

and biased results in the OLS framework (Anselin, 1988), we additionally apply a spatial 

autoregressive regression (SAR) with the following functional form: 

             ὣ  ὢ‍ ”ὡὣ   ‐                                                                       φ 
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”ὡὣ denotes a spatial lag of the target variable ὣ, with ὡ being the spatial weight matrix that 

specifies the spatial structure, and  ” representing the spatial lag parameter. 

However, linear models are subject to various restrictions due to their functional parametric 

form that can yield to misspecifications (Mason & Quigley, 1996; Pace, 1998). Because 

relationships in housing markets appear often to be non-linear, hedonic modelling can require 

the incorporation of more flexible functional forms to account for nonlinearity (Bontemps et 

al., 2008; Brunauer et al., 2013). Hence, a semi-parametric generalized additive model (GAM) 

is further considered. 

ὣ  ‍ ὢ‍ Ὢὢ ‐                                                              χ 

GAM relaxes the linearity assumption by replacing the parametric linear relationship with 

non-parametric smoothers (e.g. splines, near neighbor and kernel smoothers). The linear 

equation is expanded by ὴ smooth functions Ὢ in order to identify latent non-linear effects. 

The results of the aforementioned methods are presented in Appendix 2. The coefficients 

provide expected signs and confirm a good model fit by showing acceptable R2. 
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Appendix 2: Results of the OLS, GAM and SAR estimation 

 Dependent variable: log Rent per month 

 OLS   GAM   SAR   

log Living area 0.939 ***  (0.002) 0.900 ***    0.928  ***  (0,008) 

Floors 0.002 ***  (0.0004) 0.003 ***  (0.0003)  0.003  ***  (0,002) 

Age (relative to 2017) -0.0002 ***  (0.00003)  s 8.000 ***   -0.000  ***  (0,0001) 

Bathtub -0.032 ***  (0.002) -0.016 ***  (0.001) -0.032  ***  (0,006) 

Refurbished -0.015 ***  (0.002) 0.005 ***  (0.002) -0.013  ***  (0,007) 

Built-in kitchen 0.084 ***  (0.002) 0.077 ***  (0.002)  0.077  ***  (0,007) 

Balcony 0.011 ***  (0.002) 0.025 ***  (0.002)  0.012  ***  (0,007) 

Parking 0.053 ***  (0.002) 0.032 ***  (0.002)  0.048  ***  (0,008) 

Elevator 0.053 ***  (0.002) 0.020 ***  (0.002)  0.048  ***  (0,009) 

Terrace 0.041 ***  (0.002) 0.020 ***  (0.002)  0.041  ***  (0,009) 

log Purchasing Power 0.406 ***  (0.011) 0.069 ***  (0.002)  0.313  ***  (0,040) 

CBD_distance -0.019 ***  (0.001)  s 8.692 ***   -0.014  ***  (0,002) 

Bar_distance -0.031 ***  (0.002)  s 8.579 ***   -0.024  ***  (0,008) 

Beergarden_distance -0.020 ***  (0.002) s 8.631 ***   -0.015  ***  (0,005) 

Cafe_distance -0.014 ***  (0.003) s 8.700 ***   -0.011  ***  (0,010) 

Bakery_distance -0.011 ***  (0.003) s 8.842 ***   -0.016  ***  (0,009) 

Convenience store_distance -0.036 ***  (0.002) s 8.144 ***   -0.035  ***  (0,007) 

Department store_distance -0.006 ***  (0.001) s 8.580 ***   -0.008  ***  (0,005) 

Supermarket_distance -0.018 ***  (0.006)  s 6.487 ***   -0.029  ***  (0,020) 

Bus station_distance -0.028 ***  (0.001)  s 8.794 ***   -0.017  ***  (0,004) 

Railway station_distance -0.020 ***  (0.002) s 8.757 ***   -0.020  ***  (0,007) 

Traffic signals_distance 0.086 ***  (0.007) s 8.243 ***    0.075  ***  (0,024) 

Car wash_distance 0.012 ***  (0.002)  s 8.763 ***   0.007 ***  (0.006) 

Park_distance -0.024 ***  (0.006)  s 8.343 ***   -0.019 ***  (0.020) 

School_distance -0.003 ***  (0.005)  s 8.412 ***    0.008  ***  (0,006) 

Constant -34.043 ***  (3.087) 2.405 ***  (0.100) -22.860 ***  (11,359) 

rho 
  

 
  

 0.131 ***   

time controls Yes   Yes   Yes   

locational controls Yes   Yes   Yes   

observations 52,966 
 

 52,966 
 

 52,966 
 

 

R2 0.880 
 

 
  

 0.885 
 

 

adjusted R2 0.880 
 

 0.898 
 

 
  

 

UBRE 
  

 0.028 
 

 
  

 

Note: *p<0.1; ** p<0.05; *** p<0.01, standard errors are displayed in parentheses. The GAM column reports the estimated degrees 

of freedom of the smooth terms (s) as well as their joint significance. Time controls (year and month) as well as location 

controls (apartment coordinates) are included in all models. 
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Appendix 3: Correlation matrix

  
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 

1. Log rent p.m. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2. Log living area 0,89 1 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 0,90 0 0 0 0 0,21 0,92 0 0 0 

3. Floor 0,07 0,02 1 0 0,05 0 0 0 0 0 0 0 0 0 0,23 0 0 0 0 0 0 0 0 0 0 0 

4. Age -0,14 -0,10 -0,09 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5. Bathtub 0,12 0,18 -0,01 -0,06 1 0,74 0 0 0 0 0 0,22 0 0,02 0 0 0,77 0 0 0,01 0,51 0 0,01 0,62 0 0,05 

6. Refurbished -0,09 -0,08 -0,04 0,23 0,00 1 1,00 0 0 0 0 0 0 0,91 0 0 0 0 0 0 0 0 0 0 0,46 0 

7. Bulit-in-kitchen 0,32 0,21 0,05 -0,13 0,02 0,00 1 0 0 0 0 0,01 0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 

8. Balcony 0,19 0,19 0,10 -0,27 0,12 -0,06 0,06 1 0 0 0 0,85 0 0 0 0 0 0 0 0 0,09 0 0,02 0 0 0 

9. Parking 0,37 0,33 0,05 -0,57 0,08 -0,12 0,24 0,21 1 0 0 0 0 0,24 0 0 0 0 0 0 0,04 0 0 0 0 0 

10. Elevator 0,24 0,12 0,28 -0,56 0,03 -0,17 0,18 0,23 0,45 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11. Terrace 0,21 0,21 -0,17 -0,20 0,05 -0,06 0,09 -0,09 0,21 0,11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0,07 0 

12. Purchasing power 0,10 0,11 -0,10 0,04 0,01 0,05 0,01 0,00 0,01 -0,06 0,05 1 0 0 0 0 0 0 0 0 0 0 0 0 0,01 0 

13. CBD_distance -0,22 -0,07 -0,11 -0,04 0,01 0,02 -0,12 -0,03 -0,02 -0,18 0,03 0,42 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

14. Bar_distance -0,20 -0,04 -0,13 -0,08 0,01 0,00 -0,16 0,02 -0,01 -0,19 0,04 0,19 0,42 1 0 0 0 0 0 0 0 0 0 0 0 0 

15. Biergarten_distance -0,06 0,01 -0,01 -0,28 0,03 -0,11 -0,01 0,09 0,18 0,13 0,06 -0,06 0,07 0,05 1 0 0 0 0 0 0 0 0 0 0 0 

16. Cafe_distance -0,15 -0,03 -0,10 -0,14 0,03 -0,03 -0,15 0,07 0,04 -0,10 0,06 0,18 0,35 0,53 0,20 1 0 0 0 0 0 0 0 0 0 0 

17. Bakery_distance -0,09 0,00 -0,07 -0,12 0,00 -0,02 -0,08 0,04 0,06 -0,06 0,06 0,22 0,33 0,37 0,11 0,31 1 0 0 0 0 0 0 0 0 0 

18. 
Convenience 

store_distance 
-0,11 0,03 -0,11 -0,22 0,02 -0,05 -0,07 0,06 0,13 -0,02 0,09 0,45 0,54 0,48 0,38 0,42 0,42 1 0 0 0 0 0 0 0 0 

19. Department store_distance -0,18 -0,02 -0,09 -0,21 0,05 -0,05 -0,11 0,07 0,11 -0,07 0,06 0,17 0,43 0,47 0,46 0,43 0,22 0,58 1 0 0 0 0 0 0 0 

20. Supermarket_distance -0,05 0,03 -0,10 -0,08 0,01 -0,03 -0,07 0,03 0,03 -0,11 0,06 0,27 0,28 0,37 0,16 0,39 0,31 0,34 0,22 1 0 0 0 0 0 0 

21. Bus station_distance -0,25 -0,09 -0,15 -0,08 0,00 0,02 -0,15 0,01 -0,01 -0,18 0,03 0,29 0,62 0,57 0,07 0,40 0,48 0,59 0,48 0,29 1 0 0 0 0 0 

22. Railway station_distance -0,14 0,01 -0,12 -0,21 0,03 -0,05 -0,09 0,07 0,11 -0,06 0,07 0,41 0,59 0,40 0,45 0,43 0,35 0,65 0,64 0,34 0,52 1 0 0 0 0 

23. Traffic signals_distance -0,08 0,00 -0,09 -0,03 0,01 0,02 -0,08 0,01 -0,01 -0,14 0,04 0,20 0,38 0,45 0,10 0,37 0,26 0,42 0,30 0,37 0,33 0,35 1 0 0 0 

24. Car wash_distance 0,08 0,08 -0,01 -0,05 0,00 -0,02 0,03 0,03 0,04 0,06 0,03 0,16 -0,13 0,31 0,16 0,09 0,03 0,13 -0,08 -0,03 -0,05 0,02 0,09 1 0 0 

25. Park_distance -0,11 -0,03 -0,04 -0,06 0,03 0,00 -0,08 0,03 0,01 -0,08 0,01 0,01 0,24 0,32 -0,02 0,23 0,35 0,25 0,23 0,14 0,30 0,18 0,24 -0,08 1 0 

26. School_distance -0,06 -0,02 0,03 -0,11 0,01 -0,03 -0,04 0,05 0,04 0,02 0,02 -0,08 0,05 0,19 0,16 0,24 0,17 0,20 0,24 0,30 0,10 0,16 0,25 0,01 0,15 1 

Notes: Pearson correlation coefficients are displayed below the diagonal and p-values above 



 

32 

 

Appendix 4: Centred PD plot for Distance to department store 

 

Note: The figure displays the partial dependence centered at lowest feature value. The vertical axis denotes the feature values of the log rent 

level while the horizontal axis denotes the covariates feature values. Source: Own depiction. 
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